Introduction to algebraic topology

代數拓墣導論

授課教師: 李宗儒 Tsung-Ju Lee
學分數: 3
上課時間: 星期三 1:10pm - 2:00pm, 星期四 9:10am - 11:00am
上課地點:
課程網站:

參考書目

  • Allen Hatcher, Algebraic Topology.
  • James W. Vick, Homology Theory: An Introduction to Algebraic Topology.
  • Raoul Bott and Loring W. Tu, Differential Forms in Algebraic Topology.

先修課程或先備能力:基礎代數(能使用群、環、體、向量空間等基礎代數語言)、 基礎拓墣學(高等微積分中講授的點集拓墣知識)。 Students are supposed to be familiar with basics of algebra (languages of groups, rings, fields, vector spaces) and point-set topology (covered in Advanced Calculus).

重要公告與注意事項

預計課程內容與進度

課程內容
上課日期
預定進度
2/21, 2/22 Path and homotopy; fundamental groups.
2/28 (停課), 3/1 Examples; covering spaces.
3/6, 3/7 Lifting properties; universal covers.
3/13, 3/14 Deck transformations; van Kampen theorem (optional).
3/20, 3/21 Singular homology: ideas and the construction.
3/27, 3/28 Relative homology; exact sequences; subdivisions.
4/3, 4/4 (停課) Excision; Mayer--Vietoris sequences.
4/10, 4/11 Homology and fundamental group; applications.
4/17, 4/18 CW complexes; cellular homology.
4/24, 4/25 Midterm; singular cohomology: ideas and the construction.
5/1, 5/2 Universal coefficient theorem for singular cohomology.
5/8, 5/9 Examples; cup product and cohomology ring.
5/15, 5/16 Kunneth formula; Poincare duality.
5/22, 5/23 Poincare duality; applications.
5/29, 5/30 de Rham cohomology; Cech cohomology.
6/5, 6/6 A formal viewpoint; categories and functors.
6/12, 6/13 Sheaf cohomology.
6/19, 6/20 Final exam/oral presentation.